Researchers have captured the
first-ever image of a black
hole.
The
Event Horizon Telescope (EHT) - an array of eight
ground-based radio telescopes - was designed to capture
images of a black hole.
Six papers published today detail the image from Messier 87, a galaxy 55 million light years from Earth with a black hole at the centre 6.5 billion times the mass of the Sun.
The SMC asked experts to comment on the announcement.
Roy
Kerr, Canterbury Distinguished Professor, University of
Canterbury
comments:
Note: These
findings have proved a theory Professor Kerr worked on in
1963.
"The EHT photo is just the beginning of a new phase in the understanding of our universe. The visual evidence will continue to get more and more sophisticated.
“I was surprised that the best image was not Sagittarius A* but was a super massive black hole 2,000 times further away, and 2,000 times larger.”
Professor David Wiltshire, School of
Physical & Chemical Sciences, University of Canterbury,
comments:
"We can now
create a close-up image of light bending around a 6.5
billion solar mass black hole 55 million light years away.
Wow! This discovery, like that of gravitational waves a few
years ago, marks another important milestone in
understanding the strong gravity of black holes.
"It is also a red letter day for Canterbury Distinguished Professor Roy Kerr, whose solution of Einstein's equations describes these objects. As the abstract of the last of several papers in Astrophysical Journal Letters notes: 'This measurement from lensed emission near the event horizon is consistent with the presence of a central Kerr black hole, as predicted by the general theory of relativity.'
"This means in future we will not only be able to learn more about the crucial role that supermassive black holes play in the life cycle and ecology of galaxies, but we will also be able to test the foundations of Einstein's theory of gravity in the most extreme regime possible. It is a great step forward for science.
"More is coming in the next decade as technology finally catches up with general relativity just over 100 years after Albert Einstein conceived it, and over 50 years since Roy Kerr discovered its most important solution. Watch this space!"
Dr JJ Eldridge,
senior lecturer in astrophysics, University of Auckland,
comments:
"While
deceptively simple this image is so important, we can
clearly not see the black hole, but rather see the
surrounding disk. This means again general relativity has
passed another test. It also matches predictions of what we
expected to see that were first made 40 years ago so it's a
wonderful observation for that reason. It was also really
difficult and it's a credit to the large team for all their
work over many years to push the limits of what is possible
to give us this image."
Professor Richard Easther,
Head of Department, Physics, University of
Auckland.
Professor
Easther also wrote a blog before the
announcement.
"This is an iconic image, and marks the beginning of a new era for both astronomy and fundamental physics; from here we can further explore the immediate environment of what is likely to be one of largest black holes in the universe. This image is a story of extremes — we are validating our deepest ideas about the physical world by testing them in the most extreme environment we can imagine. We do it by coordinating a network of telescopes in locations ranging from the South Pole to the high Andes, and must then crunch a literal truckload of data to make sense of it all. It’s a stunning achievement."
ends